$a b c=4 R F$ without trigonometry.
Arkady M. Alt

Pic. 1
Frst note that $F:=[A B C]=\frac{a h_{a}}{2}$ and similarly $F=\frac{b h_{b}}{2}=\frac{c h_{c}}{2}$.

Pic. 2

Let $x:=\angle O C B$. (Pic.2). Then $\angle O B C=x$ and as well as $\angle O C A=\angle O A C=C-x$, $\angle O B A=\angle O A B=B-x$.
Hence $A=C-x+B-x \Leftrightarrow 2 x=B+C-A$ and, therefore, $\angle B O C=180^{\circ}-2 x=180^{\circ}-B-C+A=2 A$. Similarly, $\angle C O A=2 B, \angle A O B=2 C$.

Pic. 4

Since $\angle A O L=B$ (Pic.3) then right triangles $\triangle A K B$ and $\triangle A L O$ (Pic.4) are similar.
Then $\frac{h_{a}}{c}=\frac{b / 2}{R} \Leftrightarrow h_{a}=\frac{b c}{2 R} \Leftrightarrow b c=2 h_{a} R \Rightarrow a b c=2 a h_{a} R=4 R F$.
So, we obtain without trig. two important correlations:

1. $h_{a}=\frac{b c}{2 R}$ (which express length height dropped on a via circumradius and two other sidelengths;
2. $a b c=4 R F$ that give opportunity find value of circumradius via sidelengths of the triangle.
Remark 1.
In the case of introduction to trig. of acute angles we also immediately obtain complete SineTheorem.
Indeed, then $\frac{b / 2}{R}=\sin B \Leftrightarrow 2 R=\frac{b}{\sin B}$ and similar $2 R=\frac{a}{\sin A}=\frac{c}{\sin C}$.
Since $a b c=4 R F$ then $2 R=\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{a b c}{2 F}$.

Problem

\star Known that in a triangle $F=\frac{b c}{2}$. Prove, without using trig., that triangle is right angled.

Solution.
Since $F=\frac{a h_{a}}{2}$ and $h_{a}=\frac{b c}{2 R}$ then $a h_{a}=b c \Rightarrow a=2 R \Rightarrow \angle A=90^{\circ}$.
(Another proof:
$\left.F=\frac{b c}{2} \Leftrightarrow 2 b c=4 F \Leftrightarrow 4 b^{2} c^{2}=16 F^{2} \Leftrightarrow 4 b^{2} c^{2}=4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2} \Leftrightarrow b^{2}+c^{2}=a^{2}\right)$
Remark 2. Traditional way to derive $a b c=4 R F$.
Since $F=\frac{b c \sin A}{2}$ and $a=2 R \sin A$ then $4 F R=b c \cdot 2 R \sin A=a b c$

